Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 273
Filter
1.
Front Chem ; 12: 1380523, 2024.
Article in English | MEDLINE | ID: mdl-38694406

ABSTRACT

Diabetes mellitus is a multi-systematic chronic metabolic disorder and life-threatening disease resulting from impaired glucose homeostasis. The inhibition of glucosidase, particularly α-glucosidase, could serve as an effective methodology in treating diabetes. Attributed to the catalytic function of glucosidase, the present research focuses on the synthesis of sulfonamide-based acyl pyrazoles (5a-k) followed by their in vitro and in silico screening against α-glucosidase. The envisaged structures of prepared compounds were confirmed through NMR and FTIR spectroscopy and mass spectrometry. All compounds were found to be more potent against α-glucosidase than the standard drug, acarbose (IC50 = 35.1 ± 0.14 µM), with IC50 values ranging from 1.13 to 28.27 µM. However, compound 5a displayed the highest anti-diabetic activity (IC50 = 1.13 ± 0.06 µM). Furthermore, in silico studies revealed the intermolecular interactions of most potent compounds (5a and 5b), with active site residues reflecting the importance of pyrazole and sulfonamide moieties. This interaction pattern clearly manifests various structure-activity relationships, while the docking results correspond to the IC50 values of tested compounds. Hence, recent investigation reveals the medicinal significance of sulfonamide-clubbed pyrazole derivatives as prospective therapeutic candidates for treating type 2 diabetes mellitus (T2DM).

2.
Eur J Pharm Sci ; : 106797, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735401

ABSTRACT

The multicomponent etiology, complex clinical implications, dose-based side effect and degree of pain mitigation associated with the current pharmacological therapy is incapable in complete resolution of chronic neuropathic pain patients which necessitates the perpetual requirement of novel medication therapy. Therefore, this study explored the ameliorative aptitude of two novel methanimine imitative like (E)-N-(4-nitrobenzylidene)-4-chloro-2-iodobenzamine (KB 09) and (E)-N-(4-methylbenzylidene)-4-chloro-2-iodobenzamine (KB 10) in chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rat model. Standard behavioral tests like dynamic and static allodynia, cold, thermal and mechanical hyperalgesia along with rotarod activity were performed at various experimental days like 0, 3, 7, 14 and 21. Enzyme linked immunosorbent assay (ELISA) on spinal tissue and antioxidant assays on sciatic nerve were executed accompanied by molecular docking and simulation studies. Prolonged ligation of sciatic nerve expressively induced hyperalgesia as well as allodynia in rats. KB 09 and KB 10 substantially attenuated the CCI elicited hyperalgesia and allodynia. They significantly reduced the biomarkers of pain and inflammation like Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in ELISA and while enhanced the GSH, SOD and CAT and diminished the MDA levels during antioxidant assays. KB 09 displayed -9.62 kcal/mol with TNF-α and -7.68 kcal/mol binding energy with IL-6 whereas KB 10 exhibited binding energy of -8.20 kcal/mol with IL-6 while -11.68 kcal/mol with TNF-α and hence both trial compounds ensured stable interaction with IL-6 and TNF-α during computational analysis. The results advocated that both methanimine derivatives might be novel candidates for attenuation of CCI-induced neuropathic pain prospects via anti-nociceptive, anti-inflammatory and antioxidant mechanisms.

3.
ACS Omega ; 9(13): 15603-15614, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585118

ABSTRACT

In the present work, 2-imino-1,3-thiazolines featuring highly fluorinated fragments were synthesized through a straightforward cyclization of diversely substituted thioureas with 2-bromo-1-(4-fluorophenyl)ethan-1-one. The target compounds were obtained in good yields, and structures were established by FTIR and 1H- and 13C NMR spectroscopic methods. The in vitro biological assay revealed that all the compounds significantly obstruct the α-glucosidase. Compound 6d (3-fluoro-N-(3-(2-fluorophenyl)-4-(4-fluorophenyl)thiazol-2(3H)-ylidene)benzamide) showed the highest antidiabetic potential with an IC50 value of 1.47 ± 0.05 µM. In addition, computational analysis revealed the binding energy of -11.1 kcal/mol for 6d which was lower than the positive standard, acarbose (-7.9 kcal/mol). Several intermolecular interactions between the active site residues and 6d highlight the significance of 2-imino-1,3-thiazoline core in attaining the potent efficacy and making these compounds a valuable pharmacophore in drug discovery.

4.
BMC Chem ; 18(1): 47, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448974

ABSTRACT

In the current study, Azo-Thiohydantoins derivatives were synthesized and characterized by using various spectroscopic techniques including FTIR, 1H-NMR, 13C-NMR, elemental and HRMS analysis. The compounds were evaluated for alkaline phosphatase activity and it was observed that among all the synthesized compounds, derivative 7e exhibited substantial inhibitory activity (IC50 = 0.308 ± 0.065 µM), surpassing the standard inhibitor (L-Phenyl alanine, IC50 = 80.2 ± 1.1 µM). Along with this, these derivatives were comprehensively examined regarding the electronic properties and reactivity of the synthesized compounds using Density Functional Theory (DFT) calculations, where the results were found very promising and the synthesized compound were found stable. After that, SwissADME evaluations highlighted compounds for their favorable physicochemical properties, including solubility and drug-likeness. Molecular docking exhibited the strong binding affinities of 7f and 7e derivatives with intestinal alkaline phosphatase (IAP), further supported by Molecular Dynamics (MD) simulations. This comprehensive integration of experimental and computational approaches sheds the light on the potential therapeutic applications of the synthesized compounds. By providing a detailed investigation of these aspects, this research opens the avenues for the development of novel pharmacologically active compounds with diverse applications.

5.
Int J Biol Macromol ; 263(Pt 1): 130231, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368975

ABSTRACT

Three newly synthesized amantadine thiourea conjugates namely MS-1 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)benzamide, MS-2 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)-4-methylbenzamide and MS-3 N-((3 s,5 s,7 s)-adamantan-1-ylcarbamothioyl)-4-chlorobenzamide were investigated for their structures, bindings (DNA/ elastase), and for their impact on healthy and cancerous cells. Theoretical (DFT/docking) and experimental {UV-visible (UV-), fluorescence (Flu-), and cyclic voltammetry (CV)} studies indicated binding interactions of each conjugate with DNA and elastase enzyme. Theoretically and experimentally calculated binding parameters for conjugate - DNA interaction revealed MS-3 - DNA to have most significant binding with comparatively greater values of binding parameters {(Kb/M-1: docking, 3.8 × 105; UV-, 5.95 × 103; Flu-,1.55 × 105; CV, 1.52 × 104), (∆G/ kJmol-1: docking, -32.09; UV-, -22.40; Flu-,-30.81; CV, -24.82)}. The docked structures, greater bindings site size values (n), and the trend in DNA viscosity changes in the presence of each conjugate concentration confirmed a mixed binding mode of interaction among them. Conjugate - elastase binding by docking agreed with the experimental anti-elastase findings. Cytotoxicity studies of each tested conjugate demonstrated greater cytotoxicity for cancerous (MG-U87) cells in comparison to control, while for the normal (HEK-293) cells the cytotoxicity was found comparatively low. Overall exploration suggested that MS-3 is the most effective candidate for DNA binding, anti-elastase, and for anti-glioma activities.


Subject(s)
Amantadine , Thiourea , Humans , Thiourea/pharmacology , Thiourea/chemistry , HEK293 Cells , Molecular Docking Simulation , Amantadine/pharmacology , DNA/chemistry , Pancreatic Elastase
6.
Chem Biodivers ; 21(5): e202400085, 2024 May.
Article in English | MEDLINE | ID: mdl-38329156

ABSTRACT

A lesser-known bee product called drone brood homogenate (DBH, apilarnil) has recently attracted scientific interest for its chemical and biological properties. It contains pharmacologically active compounds that may have neuroprotective, antioxidant, fertility-enhancing, and antiviral effects. Unlike other bee products, the chemical composition of bee drone larva is poorly studied. This study analyzed the chemical compostion of apilarnil using several methods. These included liquid chromatography-mass spectrometry (LC-MS/MS) and a combination of gas chromatography/mass spectrometry with solid phase micro-extraction (SPME/GC-MS). Additionally, antioxidant activity of the apilarnil was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. A chemical assessment of apilarnil showed that it has 6.3±0.00, 74.67±0.10 %, 3.65±0.32 %, 8.80±1.01 %, 13.16±0.94 %, and 8.79±0.49 % of pH, moisture, total lipids, proteins, flavonoids, and carbohydrates, respectively. LC-MS/MS analysis and molecular networking (GNPS) of apilarnil exhibited 44 compounds, including fatty acids, flavonoids, glycerophospholipids, alcohols, sugars, amino acids, and steroids. GC-MS detected 30 volatile compounds in apilarnil, mainly esters (24 %), ketones (23.84 %), ethers (15.05 %), alcohols (11.41 %), fatty acids (10.06), aldehydes (6.73 %), amines (5.46), and alkene (5.53 %). The antioxidant activity of apilarnil was measured using DPPH with an IC50 of 179.93±2.46 µg/ml.


Subject(s)
Antioxidants , Biphenyl Compounds , Bees , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Animals , Biphenyl Compounds/antagonists & inhibitors , Gas Chromatography-Mass Spectrometry , Picrates/antagonists & inhibitors , Tandem Mass Spectrometry , Chromatography, Liquid , Solid Phase Microextraction
7.
RSC Adv ; 14(2): 1018-1033, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38174269

ABSTRACT

In the present work, a small library of novel pyrazolinyl-acyl thiourea (5a-j) was designed and synthesized through a multistep sequence and the synthesized compounds were screened for their antifungal, antibacterial and antioxidant activities as well as urease, amylase and α-glucosidase inhibitory activities. The synthesized series (5a-o) was characterized using a combination of spectroscopic techniques, including FT-IR, 1H NMR and 13C NMR. All compounds (5a-j) were found to have significant potency against urease, α-glucosidase, α-amylase, and DPPH. The synthesized compounds were also screened for potential antibacterial and anti-fungal inhibition activities. IC50 values for all the prepared compounds for urease, α-glucosidase, amylase, and DPPH inhibition were determined and derivatives 5b and 5g were found to be the most potent urease inhibitors with IC50 values of 54.2 ± 0.32 and 43.6 ± 0.25 µM, respectively. Whilst compound 5b (IC50 = 68.3 ± 0.11 µM) is a potent α-glucosidase inhibitor, compound 5f (90.3 ± 1.08 µM) is a potent amylase inhibitor and compound 5b (103.4 ± 1.15 µM) is a potent antioxidant. The different substitutions on the phenyl ring were the basis for structure-activity relationship (SAR) study. The molecular docking study was performed for the confirmation of binding interactions.

8.
RSC Adv ; 13(48): 33826-33843, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38020022

ABSTRACT

In the current study, a novel compound, bis(3-(2H-benzo[d][1,2,3]triazol-2-yl)-2-(prop-2-yn-1-yloxy)-5-(2,4,4-trimethylpentan-2-yl)phenyl)methane (TAJ1), has been synthesized by the reaction of 6,6'-methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol) (1), propargyl bromide (2) and potassium carbonate. Spectroscopic (FTIR, 1H-NMR, 13C-NMR) and single-crystal assays proved the structure of the synthesized sample. XRD analysis confirmed the structure of the synthesized compound, showing that it possesses two aromatic parts linked via a -CH2 carbon with a bond angle of 108.40°. The cell line activity reported a percent growth reduction for different cell types (HeLa cells, MCF-7 cells, and Vero cells) under various treatment conditions (TAJ1, cisplatin, and doxorubicin) after 24 hours and 48 hours. The percent growth reduction represents a decrease in cell growth compared to a control condition. Furthermore, density functional theory (DFT) calculations were utilized to examine the frontier molecular orbitals (FMOs) and overall chemical reactivity descriptors of TAJ1. The molecule's chemical reactivity and stability were assessed by determining the HOMO-LUMO energy gap. TAJ1 displayed a HOMO energy level of -0.224 eV, a LUMO energy level of -0.065 eV, and a HOMO-LUMO gap of 0.159 eV. Additionally, molecular docking analysis was performed to assess the binding affinities of TAJ1 with various proteins. The compound TAJ1 showed potent interactions with NEK2, exhibiting -10.5 kcal mol-1 binding energy. Although TAJ1 has demonstrated interactions with NEK7, NEK9, TP53, NF-KAPPA-B, and caspase-3 proteins, suggesting its potential as a therapeutic agent, it is important to evaluate the conformational stability of the protein-ligand complex. Hence, molecular dynamics simulations were conducted to assess this stability. To analyze the complex, root mean square deviation (RMSD) and root mean square fluctuation analyses were performed. The results of these analyses indicate that the top hits obtained from the virtual screening possess the ability to act as effective NEK2 inhibitors. Therefore, further investigation of the inhibitory potential of these identified compounds using in vitro and in vivo approaches is recommended.

9.
Curr Org Synth ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37670713

ABSTRACT

INTRODUCTION: Benzothiazolamine-based bisthiourea precursors were prepared in good yields. These bisthiourea derivatives were cyclized into symmetrical Bis Methyl 2-[3-(benzothiazol-2-yl)-2-terephthaloyl-bis-4-oxo-thiazolidin-5-ylidene]acetates, by their condensation with (DMAD) dimethyl but-2-meditate in the presence of dry methanol. METHOD: All these compounds were evaluated for their biological applications. Antioxidant activities were performed by adopting a DPPH radical assay, and an in vitro enzyme inhibition assay was performed to investigate their enzyme inhibitory potential against butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). RESULT: Molecular modeling and QSAR studies were performed to monitor the binding propensity of imidathiazolidinone derivatives with enzymes and DNA. Also, electronic and steric descriptors were calculated to determine the effect of structure on the activity of imidathiazolidinone derivatives. CONCLUSION: The characterization of all the synthesized compounds was done by their physical data, FT-IR, NMR and elemental analysis.

10.
RSC Adv ; 13(37): 26229-26238, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37670997

ABSTRACT

Diabetes mellitus is a metabolic disorder and more than 90% of diabetic patients suffer from type-2 diabetes, which is characterized by hyperglycemia. α-Glucosidase inhibition has become an appropriate approach to tackle high blood glucose levels. The current study was focused on synthesizing coumarin-hydrazone hybrids (7a-i) by using facile chemical reactions. The synthesized compounds were characterized by using 1H-NMR, 13C-NMR, and IR. To evaluate their anti-diabetic capability, all of the conjugates were screened for in vitro α-glucosidase inhibitory activity to reveal their therapeutic importance. All of the compounds (except 7b) demonstrated significant enzyme inhibitory potential with IC50 values ranging between 2.39-57.52 µM, as compared to the standard inhibitor, acarbose (IC50 = 873.34 ± 1.67 µM). Among them, compound 7c is the most potent α-glucosidase inhibitor (IC50 = 2.39 ± 0.05 µM). Additionally, molecular docking was employed to scrutinize the binding pattern of active compounds within the α-glucosidase binding site. The in silico analysis reflects that hydrazone moiety is an essential pharmacophore for the binding of compounds with the active site residues of the enzyme. This study demonstrates that compounds 7c and 7f deserve further molecular optimization for potential application in diabetic management.

11.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37631077

ABSTRACT

Fluorine is characterized by high electronegativity and small atomic size, which provide this molecule with the unique property of augmenting the potency, selectivity, metabolic stability, and pharmacokinetics of drugs. Fluorine (F) substitution has been extensively explored in drug research as a means of improving biological activity and enhancing chemical or metabolic stability. Selective F substitution onto a therapeutic or diagnostic drug candidate can enhance several pharmacokinetic and physicochemical properties such as metabolic stability and membrane permeation. The increased binding ability of fluorinated drug target proteins has also been reported in some cases. An emerging line of research on F substitution has been addressed by using 18F as a radiolabel tracer atom in the extremely sensitive methodology of positron emission tomography (PET) imaging. This review aims to report on the fluorinated drugs approved by the US Food and Drug Administration (FDA) from 2016 to 2022. It cites selected examples from a variety of therapeutic and diagnostic drugs. FDA-approved drugs in this period have a variety of heterocyclic cores, including pyrrole, pyrazole, imidazole, triazole, pyridine, pyridone, pyridazine, pyrazine, pyrimidine, triazine, purine, indole, benzimidazole, isoquinoline, and quinoline appended with either F-18 or F-19. Some fluorinated oligonucleotides were also authorized by the FDA between 2019 and 2022.

12.
RSC Adv ; 13(36): 24988-25001, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37614781

ABSTRACT

A series of ten novel compounds were synthesized by incorporating a 1,3 thiazole core into amantadine and their structures were validated using different analytical and spectral methods such as FTIR, EI-MS, 1H NMR, and 13C NMR. The antibacterial and enzyme inhibitory properties of these newly synthesized compounds were evaluated. Remarkably, the compounds exhibited significant antibacterial activity against Escherichia coli and Bacillus subtilis. Additionally, the in vitro inhibitory activities of the synthesized compounds, against α-amylase, α-glucosidase, and urease were investigated. Among the tested compounds, compound 6d demonstrated potent and selective inhibition of α-amylase IC50 = 97.37 ± 1.52 µM, while acarbose was used as positive control and exhibited IC50 = 5.17 ± 0.25 µM. Compound 6d and 6e exhibited prominent inhibition against α-glucosidase IC50 = 38.73 ± 0.80 µM and 41.63 ± 0.26 µM respectively. Furthermore, compound 6d inhibited urease with exceptional efficacy IC50 = 32.76 µM, while positive control thiourea showed more prominent activity having IC50 = 1.334 µM. Molecular docking studies disclosed the binding mechanism and affinity of these new inhibitors within the binding sites of various amino acids. To investigate the association between molecular structural characteristics and inhibitory actions of synthesized derivatives, preliminary structure-activity relationship (SAR) studies were performed. These findings indicated that compounds 6a, 6c, 6d and 6e are potential candidates for hit-to-lead follow-up in the drug-discovery process for treating diabetes and hyperglycemia.

13.
Molecules ; 28(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37570735

ABSTRACT

Ferrocenyl-based compounds have many applications in diverse scientific disciplines, including in polymer chemistry as redox dynamic polymers and dendrimers, in materials science as bioreceptors, and in pharmacology, biochemistry, electrochemistry, and nonlinear optics. Considering the horizon of ferrocene chemistry, we attempted to condense the neoteric advancements in the synthesis and applications of ferrocene derivatives reported in the literature from 2016 to date. This paper presents data on the progression of the synthesis of diverse classes of organic compounds having ferrocene scaffolds and recent developments in applications of ferrocene-based organometallic compounds, with a special focus on their biological, medicinal, bio-sensing, chemosensing, asymmetric catalysis, material, and industrial applications.

14.
BMC Chem ; 17(1): 97, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580804

ABSTRACT

Energetic heterocycles, including pyridines, triazoles, and tetrazoles, exhibit greater density, heats of formation, and oxygen balance compared to their carbocyclic counterparts, making them a promising approach for synthesizing novel bis-tetrazole acetamides. Synthesized compounds A-F, some of which feature a chlorine atom attached to the phenyl ring, serve as valuable synthons for aryl coupling reactions. Analysis via 1H-NMR and 13C-NMR spectroscopy, as well as density functional considerations through B3LYP functional correlation with 6-311 + + G(d) and 6-31G(d) basis set, revealed the observed LUMO/HOMO energies and charge transfer within the molecule. Additionally, the dipole moment, chemical hardness, softness, ionization potential, local reactivity potential via Fukui indices and thermodynamic properties (entropy, enthalpy, and Gibbs free energy) of the molecule were calculated through density functional theory studies. In addition, Molecular Docking studies were conducted to investigate the anti-cancer potential of synthesized heterocyclic compounds against caspase 3, NF-KAPPA-B and P53 protein. Molecular docking analysis demonstrated a potent interaction between 2,2'-(5,5'-(1,4-phenylene)bis(1H-tetrazole-5,1-diyl))bis-N-(2,4-dinitrophenyl) acetamides (6d) and TP53 and NF-KAPPA-B with binding energies of - 11.8 kJ/mol and - 10.9 kJ/mol for TP53 and NF-KAPPA-B, respectively. Similarly, 2,2'-(5,5'-(1,4-phenylene)bis(1H-tetrazole-5,1-diyl))bis-N-(2-chlorophenyl) acetamides (6f) exhibited a strong interaction with caspase-3 with binding energy of -10.0 kJ/mol, indicating their potential as therapeutic agents against these proteins. Furthermore, the findings of current study was further strengthen by 100 ns molecular dynamics (MD) simulations. Finally, theoretical studies of oxygen balance and nitrogen percentage suggest that these molecules can be utilized as energetic materials.

15.
BMC Chem ; 17(1): 95, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550776

ABSTRACT

A new compound, C23H20BrN3OS, containing a quinoline-based iminothiazoline with a thiazoline ring, was synthesized and its crystal and molecular structures were analyzed through single crystal X-ray analysis. The compound belongs to the triclinic system P - 1 space group, with dimensions of a = 9.2304 (6) Å, b = 11.1780 (8) Å, c = 11.3006 (6) Å, α = 107.146 (5)°, ß = 93.701 (5)°, γ = 110.435 (6)°, Z = 2 and V = 1025.61 (12) Å3. The crystal structure showed that C-H···N and C-H···O hydrogen bond linkages, forming infinite double chains along the b-axis direction, and enclosing R22(14) and R22(16) ring motifs. The Hirshfeld surface analysis revealed that H…H (44.1%) and H…C/C…H (15.3%) interactions made the most significant contribution. The newly synthesized (Z)-4-bromo-N-(4-butyl-3 (quinolin-3-yl)thiazol-2(3H)-ylidene)benzamide, in comparison to oleanolic acid, exhibited more strong potential against elastase with an inhibition value of 1.21 µM. Additionally, the derivative was evaluated using molecular docking and molecular dynamics simulation studies, which showed that the quinoline based iminothiazoline derivative has the potential to be a novel inhibitor of elastase enzyme. Both theoretical and experimental findings suggested that this compound could have a number of biological activities.

16.
Med Chem Res ; 32(6): 1077-1086, 2023.
Article in English | MEDLINE | ID: mdl-37305207

ABSTRACT

Naphthalene ring is present in a number of FDA-approved, commercially available medications, including naphyrone, terbinafine, propranolol, naproxen, duloxetine, lasofoxetine, and bedaquiline. By reacting newly obtained 1-naphthoyl isothiocyanate with properly modified anilines, a library of ten novel naphthalene-thiourea conjugates (5a-5j) were produced with good to exceptional yields and high purity. The newly synthesized compounds were observed for their potential to inhibit alkaline phosphatase (ALP) and scavenge free radicals. All of the investigated compounds displayed a more powerful inhibitory profile than the reference agent, KH2PO4 particularly compound 5h and 5a exhibited strong inhibitory potential against ALP with IC50 value of 0.365 ± 0.011 and 0.436 ± 0.057 µM respectively. In addition, Lineweaver-Burk plots revealed the non-competitive inhibition mode of the most powerful derivative i.e., 5h (ki value 0.5 µM). To investigate the putative binding mode of selective inhibitor interactions, molecular docking was performed. It is recommended that future research will focus on developing selective alkaline phosphatase inhibitors by modifying the structure of the 5h derivative.

17.
Molecules ; 28(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37241836

ABSTRACT

The tropylium ion is a non-benzenoid aromatic species that works as a catalyst. This chemical entity brings about a large number of organic transformations, such as hydroboration reactions, ring contraction, the trapping of enolates, oxidative functionalization, metathesis, insertion, acetalization, and trans-acetalization reactions. The tropylium ion also functions as a coupling reagent in synthetic reactions. This cation's versatility can be seen in its role in the synthesis of macrocyclic compounds and cage structures. Bearing a charge, the tropylium ion is more prone to nucleophilic/electrophilic reactions than neutral benzenoid equivalents. This ability enables it to assist in a variety of chemical reactions. The primary purpose of using tropylium ions in organic reactions is to replace transition metals in catalysis chemistry. It outperforms transition-metal catalysts in terms of its yield, moderate conditions, non-toxic byproducts, functional group tolerance, selectivity, and ease of handling. Furthermore, the tropylium ion is simple to synthesize in the laboratory. The current review incorporates the literature reported from 1950 to 2021; however, the last two decades have witnessed a phenomenal upsurge in the utilization of the tropylium ion in the facilitation of organic conversions. The importance of the tropylium ion as an environmentally safe catalyst in synthesis and a comprehensive summary of some important reactions catalyzed via tropylium cations are described.

18.
Molecules ; 28(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985680

ABSTRACT

Bis-acyl-thiourea derivatives, namely N,N'-(((4-nitro-1,2-phenylene)bis(azanediyl)) bis(carbonothioyl))bis(2,4-dichlorobenzamide) (UP-1), N,N'-(((4-nitro-1,2-phenylene) bis(azanediyl))bis(carbonothioyl))diheptanamide (UP-2), and N,N'-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbonothioyl))dibutannamide (UP-3), were synthesized in two steps. The structural characterization of the derivatives was carried out by FTIR, 1H-NMR, and 13C-NMR, and then their DNA binding, anti-urease, and anticancer activities were explored. Both theoretical and experimental results, as obtained by density functional theory, molecular docking, UV-visible spectroscopy, fluorescence (Flu-)spectroscopy, cyclic voltammetry (CV), and viscometry, pointed towards compounds' interactions with DNA. However, the values of binding constant (Kb), binding site size (n), and negative Gibbs free energy change (ΔG) (as evaluated by docking, UV-vis, Flu-, and CV) indicated that all the derivatives exhibited binding interactions with the DNA in the order UP-3 > UP-2 > UP-1. The experimental findings from spectral and electrochemical analysis complemented each other and supported the theoretical analysis. The lower diffusion coefficient (Do) values, as obtained from CV responses of each compound after DNA addition at various scan rates, further confirmed the formation of a bulky compound-DNA complex that caused slow diffusion. The mixed binding mode of interaction as seen in docking was further verified by changes in DNA viscosity with varying compound concentrations. All compounds showed strong anti-urease activity, whereas UP-1 was found to have comparatively better inhibitory efficiency, with an IC50 value of 1.55 ± 0.0288 µM. The dose-dependent cytotoxicity of the synthesized derivatives against glioblastoma MG-U87 cells (a human brain cancer cell line) followed by HEK-293 cells (a normal human embryonic kidney cell line) indicated that UP-1 and UP-3 have greater cytotoxicity against both cancerous and healthy cell lines at 400 µM. However, dose-dependent responses of UP-2 showed cytotoxicity against cancerous cells, while it showed no cytotoxicity on the healthy cell line at a low concentration range of 40-120 µM.


Subject(s)
Brain Neoplasms , Urease , Humans , Molecular Docking Simulation , HEK293 Cells , Anti-Bacterial Agents/pharmacology , DNA/chemistry , Thiourea/chemistry , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology
20.
J Enzyme Inhib Med Chem ; 38(1): 2163394, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36629454

ABSTRACT

Deposition of hydroxyapatite (HA) or alkaline phosphate crystals on soft tissues causes the pathological calcification diseases comprising of end-stage osteoarthritis (OA), ankylosing spondylitis (AS), medial artery calcification and tumour calcification. The pathological calcification is symbolised by increased concentration of tissue non-specific alkaline phosphatase (TNAP). An efficient therapeutic strategy to eradicate these diseases is required, and for this the alkaline phosphatase inhibitors can play a potential role. In this context a series of novel quinolinyl iminothiazolines was synthesised and evaluated for alkaline phosphatase inhibition potential. All the compounds were subjected to DFT studies where N-benzamide quinolinyl iminothiazoline (6g), N-dichlorobenzamide quinolinyl iminothiazoline (6i) and N-nitrobenzamide quinolinyl iminothiazoline (6j) were found as the most reactive compounds. Then during the in-vitro testing, the compound N-benzamide quinolinyl iminothiazoline (6g) exhibited the maximum alkaline phosphatase inhibitory effect (IC50 = 0.337 ± 0.015 µM) as compared to other analogues and standard KH2PO4 (IC50 = 5.245 ± 0.477 µM). The results were supported by the molecular docking studies, molecular dynamics simulations and kinetic analysis which also revealed the inhibitory potential of compound N-benzamide quinolinyl iminothiazoline (6g) against alkaline phosphatase. This compound can be act as lead molecule for the synthesis of more effective inhibitors and can be suggested to test at the molecular level.


Subject(s)
Alkaline Phosphatase , Enzyme Inhibitors , Molecular Docking Simulation , Kinetics , Alkaline Phosphatase/metabolism , Enzyme Inhibitors/chemistry , Benzamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...